Make Chiangmai Mail | your Homepage | Bookmark

Chiangmai 's First English Language Newspaper

Pattaya Blatt | Pattaya Mail | Pattaya Mail TV

 

Copyright 2020 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Update April, 2020


Home
Thailand News
Business
Travel Tourism
Book Review
Grapevine
Science & Technology
Update by Thanaphon Paewsoongnern
 
 
 
Science & Technology
 

The man who wanted to fly on Mars

 

Mars Helicopter’s chief engineer Bob Balaram and the Mars Helicopter on a test stand. The technology demonstration will ride aboard NASA’s Perseverance rover to the Red Planet. (Credits: NASA/JPL-Caltech)

Written by Jane Platt Jet Propulsion Laboratory, Pasadena, Calif.

Even before this interviewer can finish the question, “Did anyone ever tell you this was a crazy idea?” Bob Balaram jumps in: “Everyone. All the time.”

This “crazy idea” is the Mars Helicopter, currently at Kennedy Space Center waiting to hitch a ride to the Red Planet on the Mars Perseverance rover this summer.

Although Balaram probably didn’t know it at the time, the seed for an idea like this sprouted for him in the 1960s Apollo era, during his childhood in south India. His uncle wrote to the U.S. Consulate, asking for information about NASA and space exploration. The bulging envelope they sent back, stuffed with glossy booklets, entranced young Bob. His interest in space was piqued further by listening to the Moon landing on the radio. “I gobbled it up,” he says. “Long before the internet, the U.S. had good outreach. You had my eyeballs.”

(Left to right) Mars Helicopter assembly, test, launch operations interface lead Teddy Tzanetos, project manager MiMi Aung and chief engineer Bob Balaram observe a flight test on Jan. 18, 2019, as the flight model of the Mars Helicopter was tested in the 25-foot-wide vacuum chamber at JPL. (Credits: NASA/JPL-Caltech)

His active brain and fertile imagination focused on getting an education, which would lead him to a bachelor’s degree in mechanical engineering from the Indian Institute of Technology, a master’s and Ph.D. in computer and systems engineering from Rensselaer Polytechnic Institute, and a career at NASA’s Jet Propulsion Laboratory in Southern California. That’s where he has remained for 35 years as a robotics technologist.

Balaram’s career has encompassed robotic arms, early Mars rovers, technology for a notional balloon mission to explore Venus and a stint as lead for the Mars Science Laboratory entry, descent and landing simulation software.

Cutting through obstacles, red tape and the Martian atmosphere

As with many innovative ideas, it took a village to make the helicopter happen. In the 1990s, Balaram attended a professional conference where Stanford professor Ilan Kroo spoke about a “mesicopter,” a miniature airborne vehicle for Earth applications that was funded as a NASA Innovative Advanced Concepts proposal.

This led Balaram to think about using one on Mars. He suggested a joint proposal with Stanford for a NASA Research Announcement submission and recruited AeroVironment, a small company in Simi Valley, California. The proposal got favorable reviews, and although it was not selected for funding at that time, it did yield a blade-rotor test under Mars conditions at JPL. Other than that, the idea “sat on a shelf” for 15 years.

Fast forward to a conference where the University of Pennsylvania presented about the use of drones and helicopters. Charles Elachi, then director of JPL, attended that session. When he returned to JPL, he asked whether something like this could be used on Mars. A colleague of Balaram’s mentioned his previous work in that area of research. Balaram dusted off that proposal, and Elachi asked him to write a new one for the competitive call for Mars 2020 investigation payloads. This sped up the process of developing a concept.

This image of the flight model of NASA’s Mars Helicopter was taken on Feb. 14, 2019, in a cleanroom at JPL. The aluminum base plate, side posts and crossbeam around the helicopter protect its landing legs and the attachment points that will hold it to the belly of the Mars 2020 rover. (Credits: NASA/JPL-Caltech)

Balaram and his team had eight weeks to submit a proposal. Working day and night, they met the deadline with two weeks to spare.

Although the helicopter idea was not selected as an instrument, it was funded for technology development and risk reduction. Mimi Aung became Mars Helicopter project manager, and after the team worked on risk reduction, NASA decided to fund the helicopter for flight as a technology demonstration.

Building and testing a beast

So then the reality set in: How does one actually build a helicopter to fly on Mars and get it to work?

No easy feat. Balaram describes it as a perfectly blank canvas, but with restrictions. His physics background helped him envision flying on Mars, a planet with an atmosphere that is only 1% as dense as Earth’s. He compares it to flying on Earth at a 100,000-foot (30,500-meter) altitude — about seven times higher than a typical terrestrial helicopter can fly. Another challenge was that the copter could carry only a few kilograms, including the weight of batteries and a radio for communications. “You can’t just throw mass at it, because it needed to fly,” he says.

It dawned on Balaram that it was like building a new kind of aircraft that just happens to be a spacecraft. And because it is a “passenger” on a flagship mission, he says, “we have to guarantee 100% that it will be safe.”

The end result: a 4-pound (1.8-kilogram) helicopter with two pairs of light counter-rotating blades — an upper and lower pair, to slice through the Martian atmosphere. Each pair of blades spans 4 feet (1.2 meters) in diameter.

Once it was built, Balaram says, the question was, “How do you test this beast? There’s no book saying how.” Because there is no easily accessible place on Earth with a thin atmosphere like the one on Mars, they ran tests in a vacuum chamber and the 25-foot Space Simulation Chamber at JPL.

About two-and-a-half months after landing at Jezero Crater, the Mars Helicopter team will have a window of about 30 days to perform a technology demonstration in the actual environment of the planet, starting with a series of vehicle checkouts, followed by attempts of first-ever flights in the very thin Martian atmosphere.

Despite best efforts and the best tests available on Earth, this is a high-risk, high-reward technology demonstration, with Balaram saying quite frankly, “We could fail.”

But if this “crazy idea” succeeds on Mars, it will be what Balaram describes as “kind of a Wright Brothers moment on another planet” — the first time a powered aircraft will have flown on Mars, or any planet besides Earth, for that matter. This potential breakthrough could help pave the way for future craft that would expand NASA’s portfolio of vehicles to explore other worlds.

And partly because there have been so many challenges along the way, it’s a testament to the dedication, vision, persistence and attitude of Balaram and his colleagues that the Mars Helicopter concept was funded, planned, developed and built and is heading to the Red Planet this summer.

“Bob is the inventor of our Mars Helicopter. He innovated the design and followed up on that vision to its fruition as chief engineer through all phases of design, development and test,” says project manager Aung. “Whenever we encountered a technical roadblock — and we encountered many roadblocks — we always turned to Bob, who always carries an inexhaustible set of potential solutions to be considered. Come to think of it, I don’t think I have ever seen Bob feeling stuck at any point!”

The home stretch toward Mars

The main purpose of the Mars 2020 mission is to deliver the Perseverance rover, which will not only continue to explore the past habitability of the planet, but will actually search for signs of ancient microbial life. It will also cache rock and soil samples for pickup by a potential future mission and help pave the way for future human exploration of Mars. Even if the helicopter encounters difficulties, the science-gathering mission of the Perseverance rover won’t be affected.

Balaram points out that in addition to the usual “seven minutes of terror” experienced by the team on Earth during a Mars landing, once the helicopter is on Mars and attempting to fly, “This is the seven seconds of terror every time we take off or land.”

Does Balaram worry about all this, even a little? “There’s been a crisis every single week of the last six years,” he says. “I’m used to it.”

Balaram sheds any stress that may crop up through backpacking, hiking and massage. There’s also his very supportive wife, Sandy, who bears a title within the team and her own acronym: CMO, or Chief Morale Officer. She has regularly baked cakes, pies and other goodies for Balaram to share with his colleagues for sustenance during the long process.

And he has high praise for his teammates on the Mars Helicopter project, saying the people attracted to it are agile and fast-moving. “It’s a great team, determined to dare mighty things — that’s the fun part,” Balaram says. His take on daring mighty things: “Good ideas don’t die — they just take a while.”


An astronaut’s tips for living in space – or anywhere

Adapted from a Twitter Thread by NASA astronaut Anne McClain

NASA - One thing astronauts have to be good at: living in confined spaces for long periods of time. Here are some tips for all who find yourself in a similar scenario.

Nearly 20 years successfully living on the International Space Station and more than 50 flying in space did not happen by accident. NASA astronauts and psychologists have examined what human behaviors create a healthy culture for living and working remotely in small groups. They narrowed it to five general skills and defined the associated behaviors for each skill. NASA astronauts call it “Expeditionary Behavior,” and they are part of everything we do. When it goes well, it’s called “good EB.”

Here are the five good expeditionary behavior skills.

Skill 1, Communication

Definition: Communication means to talk so you are clearly understood. To listen, and question to understand. Actively listen, pick up on non-verbal cues. Identify, discuss, then work to resolve conflict.

To practice good Communication EB, share information and feelings freely. Talk about your intentions before taking action. Use proper terminology. Discuss when your or others’ actions were not as expected. Take time to debrief after success or conflict. Listen, then restate messages to ensure they are understood. Admit when you are wrong.

Skill 2, Leadership/Followership

Definition: How well a team adapts to changed situations. A leader enhances the group’s ability to execute its purpose through positive influence. A follower (aka a subordinate leader) actively contributes to the leader’s direction. Establish an environment of trust.

To practice good Leadership/Followership EB, accept responsibility. Adjust your style to your environment. Assign tasks and set goals. Lead by example. Give direction, information, feedback, coaching and encouragement. Ensure your teammates have resources. Talk when something isn’t right. Ask questions. Offer solutions, not just problems.

Skill 3, Self-Care

Definition: Self-Care means keeping track of how healthy you are on psychological and physical levels. It includes hygiene, managing your time and your stuff, getting sleep, and maintaining your mood. Through self-care, you demonstrate your ability to be proactive to stay healthy.

To practice good Self-Care EB, realistically assess your own strengths and weaknesses, and their influence on the group. Learn from mistakes. Identify personal tendencies and their influence on your success or failure. Be open about your weaknesses and feelings. Take action to mitigate your own stress or negativity (don’t pass it on to the group). Be social. Seek feedback. Balance work, rest, and personal time. Be organized.

Skill 4, Team Care

Definition: Team Care is how healthy the group is on psychological, physical and logistical levels. Recognize that this can be influenced by stress, fatigue, sickness, supplies, resources, workload, etc. Nurture optimal team performance despite challenges.

To practice good Team Care EB, demonstrate patience and respect. Encourage others. Monitor your team for signs of stress or fatigue. Encourage participation in team activities. Develop positive relationships. Volunteer for the unpleasant tasks. Offer and accept help. Share credit; take the blame.

Skill 5, Group Living

Definition: Group Living skills are how people cooperate and become a team to achieve a goal. Identify and manage different opinions, cultures, perceptions, skills and personalities. Demonstrate resilience in the face of difficulty.

To practice good Group Living EB, cooperate rather than compete. Actively cultivate group culture (use each individual’s culture to build the whole). Respect roles, responsibilities and workload. Take accountability; give praise freely. Then work to ensure a positive team attitude. Keep calm in conflict.

You can be successful in confinement if you are intentional about your actions and deliberate about caring for your team. When we work together, we will continue to be #EarthStrong.


NASA’s Curiosity Mars Rover takes a new selfie before record climb

This selfie was taken by NASA’s Curiosity Mars rover on Feb. 26, 2020 (the 2,687th Martian day, or sol, of the mission). The crumbling rock layer at the top of the image is “the Greenheugh Pediment,” which Curiosity climbed soon after taking the image. Credits: NASA/JPL-Caltech/MSSS

NASA’s Curiosity Mars rover recently set a record for the steepest terrain it’s ever climbed, cresting the “Greenheugh Pediment,” a broad sheet of rock that sits atop a hill. And before doing that, the rover took a selfie, capturing the scene just below Greenheugh.

In front of the rover is a hole it drilled while sampling a bedrock target called “Hutton.” The entire selfie is a 360-degree panorama stitched together from 86 images relayed to Earth. The selfie captures the rover about 11 feet (3.4 meters) below the point where it climbed onto the crumbling pediment.

Curiosity finally reached the top of the slope March 6 (the 2,696th Martian day, or sol, of the mission). It took three drives to scale the hill, the second of which tilted the rover 31 degrees — the most the rover has ever tilted on Mars and just shy of the now-inactive Opportunity rover’s 32-degree tilt record, set in 2016. Curiosity took the selfie on Feb. 26, 2020 (Sol 2687).

Since 2014, Curiosity has been rolling up Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain at the center of Gale Crater. Rover operators at NASA’s Jet Propulsion Laboratory in Southern California carefully map out each drive to make sure Curiosity will be safe. The rover is never in danger of tilting so much that it would flip over — Curiosity’s rocker-bogie wheel system enables it to tilt up to 45 degrees safely — but the steep drives do cause the wheels to spin in place.

How Are Selfies Taken?

Before the climb, Curiosity used the black-and-white Navigation Cameras located on its mast to, for the first time, record a short movie of its “selfie stick,” otherwise known as its robotic arm.

Curiosity’s mission is to study whether the Martian environment could have supported microbial life billions of years ago. One tool for doing that is the Mars Hand Lens Camera, or MAHLI, located in the turret at the end of the robotic arm. This camera provides a close-up view of sand grains and rock textures, similarly to how a geologist uses a handheld magnifying glass for a closer look in the field on Earth.

By rotating the turret to face the rover, the team can use MAHLI to show Curiosity. Because each MAHLI image covers only a small area, it requires many images and arm positions to fully capture the rover and its surroundings.

“We get asked so often how Curiosity takes a selfie,” said Doug Ellison, a Curiosity camera operator at JPL. “We thought the best way to explain it would be to let the rover show everyone from its own point of view just how it’s done.”

Online: NASA video shows how Rover takes selfi. https://youtu.be/L_ii2GABPao?list=PLTiv_XWHnOZpzQKYC6nLf6M9AuBbng_O8   


Quasar tsunamis rip across galaxies

This is an illustration of a distant galaxy with an active quasar at its center. A quasar emits exceptionally large amounts of energy generated by a supermassive black hole fueled by infalling matter. Using the unique capabilities of the Hubble Space Telescope, astronomers have discovered that blistering radiation pressure from the vicinity of the black hole pushes material away from the galaxy’s center at a fraction of the speed of light. The “quasar winds” are propelling hundreds of solar masses of material each year. This affects the entire galaxy as the material snowplows into surrounding gas and dust. Credits: NASA, ESA and J. Olmsted (STScI)
 

Writing credits below

NASA, March 20, 2020 - Using the unique capabilities of NASA’s Hubble Space Telescope, a team of astronomers has discovered the most energetic outflows ever witnessed in the universe. They emanate from quasars and tear across interstellar space like tsunamis, wreaking havoc on the galaxies in which the quasars live.

Quasars are extremely remote celestial objects, emitting exceptionally large amounts of energy. Quasars contain supermassive black holes fueled by infalling matter that can shine 1,000 times brighter than their host galaxies of hundreds of billions of stars.

As the black hole devours matter, hot gas encircles it and emits intense radiation, creating the quasar. Winds, driven by blistering radiation pressure from the vicinity of the black hole, push material away from the galaxy’s center. These outflows accelerate to breathtaking velocities that are a few percent of the speed of light.

“No other phenomena carries more mechanical energy. Over the lifetime of 10 million years, these outflows produce a million times more energy than a gamma-ray burst,” explained principal investigator Nahum Arav of Virginia Tech in Blacksburg, Virginia. “The winds are pushing hundreds of solar masses of material each year. The amount of mechanical energy that these outflows carry is up to several hundreds of times higher than the luminosity of the entire Milky Way galaxy.”

The quasar winds snowplow across the galaxy’s disk. Material that otherwise would have formed new stars is violently swept from the galaxy, causing star birth to cease. Radiation pushes the gas and dust to far greater distances than scientists previously thought, creating a galaxy-wide event.

As this cosmic tsunami slams into interstellar material, the temperature at the shock front spikes to billions of degrees, where material glows largely in X-rays, but also widely across the light spectrum. Anyone witnessing this event would see a brilliant celestial display. “You’ll get lots of radiation first in X-rays and gamma rays, and afterwards it will percolate to visible and infrared light,” said Arav. “You’d get a huge light show—like Christmas trees all over the galaxy.”

Numerical simulations of galaxy evolution suggest that such outflows can explain some important cosmological puzzles, such as why astronomers observe so few large galaxies in the universe, and why there is a relationship between the mass of the galaxy and the mass of its central black hole. This study shows that such powerful quasar outflows should be prevalent in the early universe.

“Both theoreticians and observers have known for decades that there is some physical process that shuts off star formation in massive galaxies, but the nature of that process has been a mystery. Putting the observed outflows into our simulations solves these outstanding problems in galactic evolution,” explained eminent cosmologist Jeremiah P. Ostriker of Columbia University in New York and Princeton University in New Jersey.

Astronomers studied 13 quasar outflows, and they were able to clock the breakneck speed of gas being accelerated by the quasar wind by looking at spectral “fingerprints” of light from the glowing gas. The Hubble ultraviolet data show that these light absorption features created from material along the path of the light were shifted in the spectrum because of the fast motion of the gas across space. This is due to the Doppler effect, where the motion of an object compresses or stretches wavelengths of light depending on whether it is approaching or receding from us. Only Hubble has the specific range of ultraviolet sensitivity that allows for astronomers to obtain the necessary observations leading to this discovery.

Aside from measuring the most energetic quasars ever observed, the team also discovered another outflow accelerating faster than any other. It increased from nearly 43 million miles per hour to roughly 46 million miles per hour in a three-year period. The scientists believe its acceleration will continue to increase over time.

“Hubble’s ultraviolet observations allow us to follow the whole range of energy output from quasars, from cooler gas to the extremely hot, highly ionized gas in the more massive winds,” added team member Gerard Kriss of the Space Telescope Science Institute in Baltimore, Maryland. “These were previously only visible with much more difficult X-ray observations. Such powerful outflows may yield new insights into the link between the growth of a central supermassive black hole and the development of its entire host galaxy.”

The team also includes graduate student Xinfeng Xu and postdoctoral researcher Timothy Miller, both of Virginia Tech, as well as Rachel Plesha of the Space Telescope Science Institute. The findings were published in a series of six papers in March 2020, as a focus issue of The Astrophysical Journal Supplements.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

 


UPDATE

HEADLINES [click on headline to view story]

The man who wanted to fly on Mars


An astronaut’s tips for living in space – or anywhere

NASA’s Curiosity Mars Rover takes a new selfie before record climb

Quasar tsunamis rip across galaxies

 



Chiangmai Mail Publishing Co. Ltd.
189/22 Moo 5, T. Sansai Noi, A. Sansai, Chiang Mai 50210
THAILAND
Tel. 053 852 557, Fax. 053 014 195
Editor: 087 184 8508
E-mail: [email protected]
www.chiangmai-mail.com
Administration: [email protected]
Website & Newsletter Advertising: [email protected]

Copyright © 2004 Chiangmai Mail. All rights reserved.
This material may not be published, broadcast, rewritten, or redistributed.